\(\int \cos (c+d x) (a+a \sec (c+d x))^{3/2} (A+B \sec (c+d x)+C \sec ^2(c+d x)) \, dx\) [495]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F(-1)]
   Maxima [B] (verification not implemented)
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 41, antiderivative size = 144 \[ \int \cos (c+d x) (a+a \sec (c+d x))^{3/2} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\frac {a^{3/2} (3 A+2 B) \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{d}+\frac {A (a+a \sec (c+d x))^{3/2} \sin (c+d x)}{d}-\frac {a^2 (3 A-6 B-8 C) \tan (c+d x)}{3 d \sqrt {a+a \sec (c+d x)}}-\frac {a (3 A-2 C) \sqrt {a+a \sec (c+d x)} \tan (c+d x)}{3 d} \]

[Out]

a^(3/2)*(3*A+2*B)*arctan(a^(1/2)*tan(d*x+c)/(a+a*sec(d*x+c))^(1/2))/d+A*(a+a*sec(d*x+c))^(3/2)*sin(d*x+c)/d-1/
3*a^2*(3*A-6*B-8*C)*tan(d*x+c)/d/(a+a*sec(d*x+c))^(1/2)-1/3*a*(3*A-2*C)*(a+a*sec(d*x+c))^(1/2)*tan(d*x+c)/d

Rubi [A] (verified)

Time = 0.40 (sec) , antiderivative size = 144, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.146, Rules used = {4171, 4002, 4000, 3859, 209, 3877} \[ \int \cos (c+d x) (a+a \sec (c+d x))^{3/2} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\frac {a^{3/2} (3 A+2 B) \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a \sec (c+d x)+a}}\right )}{d}-\frac {a^2 (3 A-6 B-8 C) \tan (c+d x)}{3 d \sqrt {a \sec (c+d x)+a}}-\frac {a (3 A-2 C) \tan (c+d x) \sqrt {a \sec (c+d x)+a}}{3 d}+\frac {A \sin (c+d x) (a \sec (c+d x)+a)^{3/2}}{d} \]

[In]

Int[Cos[c + d*x]*(a + a*Sec[c + d*x])^(3/2)*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2),x]

[Out]

(a^(3/2)*(3*A + 2*B)*ArcTan[(Sqrt[a]*Tan[c + d*x])/Sqrt[a + a*Sec[c + d*x]]])/d + (A*(a + a*Sec[c + d*x])^(3/2
)*Sin[c + d*x])/d - (a^2*(3*A - 6*B - 8*C)*Tan[c + d*x])/(3*d*Sqrt[a + a*Sec[c + d*x]]) - (a*(3*A - 2*C)*Sqrt[
a + a*Sec[c + d*x]]*Tan[c + d*x])/(3*d)

Rule 209

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*ArcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 3859

Int[Sqrt[csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[-2*(b/d), Subst[Int[1/(a + x^2), x], x, b*(C
ot[c + d*x]/Sqrt[a + b*Csc[c + d*x]])], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]

Rule 3877

Int[csc[(e_.) + (f_.)*(x_)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[-2*b*(Cot[e + f*x]/(
f*Sqrt[a + b*Csc[e + f*x]])), x] /; FreeQ[{a, b, e, f}, x] && EqQ[a^2 - b^2, 0]

Rule 4000

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]*(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_)), x_Symbol] :> Dist[c, In
t[Sqrt[a + b*Csc[e + f*x]], x], x] + Dist[d, Int[Sqrt[a + b*Csc[e + f*x]]*Csc[e + f*x], x], x] /; FreeQ[{a, b,
 c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0]

Rule 4002

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_)), x_Symbol] :> Simp[(-b)
*d*Cot[e + f*x]*((a + b*Csc[e + f*x])^(m - 1)/(f*m)), x] + Dist[1/m, Int[(a + b*Csc[e + f*x])^(m - 1)*Simp[a*c
*m + (b*c*m + a*d*(2*m - 1))*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] &&
GtQ[m, 1] && EqQ[a^2 - b^2, 0] && IntegerQ[2*m]

Rule 4171

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^
(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[A*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((d*
Csc[e + f*x])^n/(f*n)), x] - Dist[1/(b*d*n), Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n + 1)*Simp[a*A*m -
b*B*n - b*(A*(m + n + 1) + C*n)*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, B, C, m}, x] && EqQ[a^2 -
 b^2, 0] &&  !LtQ[m, -2^(-1)] && (LtQ[n, -2^(-1)] || EqQ[m + n + 1, 0])

Rubi steps \begin{align*} \text {integral}& = \frac {A (a+a \sec (c+d x))^{3/2} \sin (c+d x)}{d}+\frac {\int (a+a \sec (c+d x))^{3/2} \left (\frac {1}{2} a (3 A+2 B)-\frac {1}{2} a (3 A-2 C) \sec (c+d x)\right ) \, dx}{a} \\ & = \frac {A (a+a \sec (c+d x))^{3/2} \sin (c+d x)}{d}-\frac {a (3 A-2 C) \sqrt {a+a \sec (c+d x)} \tan (c+d x)}{3 d}+\frac {2 \int \sqrt {a+a \sec (c+d x)} \left (\frac {3}{4} a^2 (3 A+2 B)-\frac {1}{4} a^2 (3 A-6 B-8 C) \sec (c+d x)\right ) \, dx}{3 a} \\ & = \frac {A (a+a \sec (c+d x))^{3/2} \sin (c+d x)}{d}-\frac {a (3 A-2 C) \sqrt {a+a \sec (c+d x)} \tan (c+d x)}{3 d}+\frac {1}{2} (a (3 A+2 B)) \int \sqrt {a+a \sec (c+d x)} \, dx-\frac {1}{6} (a (3 A-6 B-8 C)) \int \sec (c+d x) \sqrt {a+a \sec (c+d x)} \, dx \\ & = \frac {A (a+a \sec (c+d x))^{3/2} \sin (c+d x)}{d}-\frac {a^2 (3 A-6 B-8 C) \tan (c+d x)}{3 d \sqrt {a+a \sec (c+d x)}}-\frac {a (3 A-2 C) \sqrt {a+a \sec (c+d x)} \tan (c+d x)}{3 d}-\frac {\left (a^2 (3 A+2 B)\right ) \text {Subst}\left (\int \frac {1}{a+x^2} \, dx,x,-\frac {a \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{d} \\ & = \frac {a^{3/2} (3 A+2 B) \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{d}+\frac {A (a+a \sec (c+d x))^{3/2} \sin (c+d x)}{d}-\frac {a^2 (3 A-6 B-8 C) \tan (c+d x)}{3 d \sqrt {a+a \sec (c+d x)}}-\frac {a (3 A-2 C) \sqrt {a+a \sec (c+d x)} \tan (c+d x)}{3 d} \\ \end{align*}

Mathematica [A] (verified)

Time = 3.11 (sec) , antiderivative size = 115, normalized size of antiderivative = 0.80 \[ \int \cos (c+d x) (a+a \sec (c+d x))^{3/2} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\frac {a \sqrt {a (1+\sec (c+d x))} \left (6 (3 A+2 B) \arctan \left (\sqrt {-1+\sec (c+d x)}\right )+\sqrt {-1+\sec (c+d x)} (4 (3 B+5 C)+(3 A+4 C+3 A \cos (2 (c+d x))) \sec (c+d x))\right ) \tan \left (\frac {1}{2} (c+d x)\right )}{6 d \sqrt {-1+\sec (c+d x)}} \]

[In]

Integrate[Cos[c + d*x]*(a + a*Sec[c + d*x])^(3/2)*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2),x]

[Out]

(a*Sqrt[a*(1 + Sec[c + d*x])]*(6*(3*A + 2*B)*ArcTan[Sqrt[-1 + Sec[c + d*x]]] + Sqrt[-1 + Sec[c + d*x]]*(4*(3*B
 + 5*C) + (3*A + 4*C + 3*A*Cos[2*(c + d*x)])*Sec[c + d*x]))*Tan[(c + d*x)/2])/(6*d*Sqrt[-1 + Sec[c + d*x]])

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(327\) vs. \(2(128)=256\).

Time = 2.52 (sec) , antiderivative size = 328, normalized size of antiderivative = 2.28

method result size
default \(\frac {a \sqrt {a \left (1+\sec \left (d x +c \right )\right )}\, \left (9 A \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \operatorname {arctanh}\left (\frac {\sin \left (d x +c \right )}{\left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}}\right ) \cos \left (d x +c \right )+6 B \,\operatorname {arctanh}\left (\frac {\sin \left (d x +c \right )}{\left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}}\right ) \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \cos \left (d x +c \right )+9 A \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \operatorname {arctanh}\left (\frac {\sin \left (d x +c \right )}{\left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}}\right )+3 A \cos \left (d x +c \right ) \sin \left (d x +c \right )+6 B \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \operatorname {arctanh}\left (\frac {\sin \left (d x +c \right )}{\left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}}\right )+6 B \sin \left (d x +c \right )+10 C \sin \left (d x +c \right )+2 C \tan \left (d x +c \right )\right )}{3 d \left (\cos \left (d x +c \right )+1\right )}\) \(328\)

[In]

int(cos(d*x+c)*(a+a*sec(d*x+c))^(3/2)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2),x,method=_RETURNVERBOSE)

[Out]

1/3*a/d*(a*(1+sec(d*x+c)))^(1/2)/(cos(d*x+c)+1)*(9*A*(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*arctanh(sin(d*x+c)/(co
s(d*x+c)+1)/(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2))*cos(d*x+c)+6*B*arctanh(sin(d*x+c)/(cos(d*x+c)+1)/(-cos(d*x+c)/
(cos(d*x+c)+1))^(1/2))*(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*cos(d*x+c)+9*A*(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*ar
ctanh(sin(d*x+c)/(cos(d*x+c)+1)/(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2))+3*A*cos(d*x+c)*sin(d*x+c)+6*B*(-cos(d*x+c)
/(cos(d*x+c)+1))^(1/2)*arctanh(sin(d*x+c)/(cos(d*x+c)+1)/(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2))+6*B*sin(d*x+c)+10
*C*sin(d*x+c)+2*C*tan(d*x+c))

Fricas [A] (verification not implemented)

none

Time = 0.32 (sec) , antiderivative size = 366, normalized size of antiderivative = 2.54 \[ \int \cos (c+d x) (a+a \sec (c+d x))^{3/2} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\left [\frac {3 \, {\left ({\left (3 \, A + 2 \, B\right )} a \cos \left (d x + c\right )^{2} + {\left (3 \, A + 2 \, B\right )} a \cos \left (d x + c\right )\right )} \sqrt {-a} \log \left (\frac {2 \, a \cos \left (d x + c\right )^{2} - 2 \, \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right ) \sin \left (d x + c\right ) + a \cos \left (d x + c\right ) - a}{\cos \left (d x + c\right ) + 1}\right ) + 2 \, {\left (3 \, A a \cos \left (d x + c\right )^{2} + 2 \, {\left (3 \, B + 5 \, C\right )} a \cos \left (d x + c\right ) + 2 \, C a\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{6 \, {\left (d \cos \left (d x + c\right )^{2} + d \cos \left (d x + c\right )\right )}}, -\frac {3 \, {\left ({\left (3 \, A + 2 \, B\right )} a \cos \left (d x + c\right )^{2} + {\left (3 \, A + 2 \, B\right )} a \cos \left (d x + c\right )\right )} \sqrt {a} \arctan \left (\frac {\sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right )}{\sqrt {a} \sin \left (d x + c\right )}\right ) - {\left (3 \, A a \cos \left (d x + c\right )^{2} + 2 \, {\left (3 \, B + 5 \, C\right )} a \cos \left (d x + c\right ) + 2 \, C a\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{3 \, {\left (d \cos \left (d x + c\right )^{2} + d \cos \left (d x + c\right )\right )}}\right ] \]

[In]

integrate(cos(d*x+c)*(a+a*sec(d*x+c))^(3/2)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2),x, algorithm="fricas")

[Out]

[1/6*(3*((3*A + 2*B)*a*cos(d*x + c)^2 + (3*A + 2*B)*a*cos(d*x + c))*sqrt(-a)*log((2*a*cos(d*x + c)^2 - 2*sqrt(
-a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)*sin(d*x + c) + a*cos(d*x + c) - a)/(cos(d*x + c) + 1)
) + 2*(3*A*a*cos(d*x + c)^2 + 2*(3*B + 5*C)*a*cos(d*x + c) + 2*C*a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*si
n(d*x + c))/(d*cos(d*x + c)^2 + d*cos(d*x + c)), -1/3*(3*((3*A + 2*B)*a*cos(d*x + c)^2 + (3*A + 2*B)*a*cos(d*x
 + c))*sqrt(a)*arctan(sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)/(sqrt(a)*sin(d*x + c))) - (3*A*a*co
s(d*x + c)^2 + 2*(3*B + 5*C)*a*cos(d*x + c) + 2*C*a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + c))/(d*
cos(d*x + c)^2 + d*cos(d*x + c))]

Sympy [F(-1)]

Timed out. \[ \int \cos (c+d x) (a+a \sec (c+d x))^{3/2} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\text {Timed out} \]

[In]

integrate(cos(d*x+c)*(a+a*sec(d*x+c))**(3/2)*(A+B*sec(d*x+c)+C*sec(d*x+c)**2),x)

[Out]

Timed out

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 1801 vs. \(2 (128) = 256\).

Time = 0.50 (sec) , antiderivative size = 1801, normalized size of antiderivative = 12.51 \[ \int \cos (c+d x) (a+a \sec (c+d x))^{3/2} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\text {Too large to display} \]

[In]

integrate(cos(d*x+c)*(a+a*sec(d*x+c))^(3/2)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2),x, algorithm="maxima")

[Out]

1/4*((2*(a*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*sin(d*x + c) - (a*cos(d*x + c) - a)*sin(1/
2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)))*(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2
*c) + 1)^(1/4)*sqrt(a) + 3*(a*arctan2(-(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4
)*(cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*sin(d*x + c) - cos(d*x + c)*sin(1/2*arctan2(sin(2*
d*x + 2*c), cos(2*d*x + 2*c) + 1))), (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*
(cos(d*x + c)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) + sin(d*x + c)*sin(1/2*arctan2(sin(2*d*
x + 2*c), cos(2*d*x + 2*c) + 1))) + 1) - a*arctan2(-(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2
*c) + 1)^(1/4)*(cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*sin(d*x + c) - cos(d*x + c)*sin(1/2*a
rctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))), (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c
) + 1)^(1/4)*(cos(d*x + c)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) + sin(d*x + c)*sin(1/2*arc
tan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))) - 1) - a*arctan2((cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*c
os(2*d*x + 2*c) + 1)^(1/4)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)), (cos(2*d*x + 2*c)^2 + sin
(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) + 1)
+ a*arctan2((cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*sin(1/2*arctan2(sin(2*d*x
 + 2*c), cos(2*d*x + 2*c) + 1)), (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*cos(
1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) - 1))*sqrt(a))*A + 2*((a*arctan2((cos(2*d*x + 2*c)^2 + si
n(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*(cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))*sin(1/2
*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) - cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*s
in(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))), (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x +
 2*c) + 1)^(1/4)*(cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*cos(1/2*arctan2(sin(2*d*x + 2*c), c
os(2*d*x + 2*c))) + sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*sin(1/2*arctan2(sin(2*d*x + 2*c),
 cos(2*d*x + 2*c)))) + 1) - a*arctan2((cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)
*(cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)
) - cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c
)))), (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*(cos(1/2*arctan2(sin(2*d*x + 2*
c), cos(2*d*x + 2*c) + 1))*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + sin(1/2*arctan2(sin(2*d*x +
2*c), cos(2*d*x + 2*c) + 1))*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))) - 1) - a*arctan2((cos(2*d*x
 + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2
*c) + 1)), (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*cos(1/2*arctan2(sin(2*d*x
+ 2*c), cos(2*d*x + 2*c) + 1)) + 1) + a*arctan2((cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c)
+ 1)^(1/4)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)), (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2
+ 2*cos(2*d*x + 2*c) + 1)^(1/4)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) - 1))*(cos(2*d*x + 2*
c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*sqrt(a) + 4*(a*cos(1/2*arctan2(sin(2*d*x + 2*c), cos
(2*d*x + 2*c) + 1))*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) - (a*cos(1/2*arctan2(sin(2*d*x + 2*c)
, cos(2*d*x + 2*c))) - a)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)))*sqrt(a))*B/(cos(2*d*x + 2*
c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4))/d

Giac [F]

\[ \int \cos (c+d x) (a+a \sec (c+d x))^{3/2} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\int { {\left (C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right ) + A\right )} {\left (a \sec \left (d x + c\right ) + a\right )}^{\frac {3}{2}} \cos \left (d x + c\right ) \,d x } \]

[In]

integrate(cos(d*x+c)*(a+a*sec(d*x+c))^(3/2)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2),x, algorithm="giac")

[Out]

sage0*x

Mupad [F(-1)]

Timed out. \[ \int \cos (c+d x) (a+a \sec (c+d x))^{3/2} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\int \cos \left (c+d\,x\right )\,{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^{3/2}\,\left (A+\frac {B}{\cos \left (c+d\,x\right )}+\frac {C}{{\cos \left (c+d\,x\right )}^2}\right ) \,d x \]

[In]

int(cos(c + d*x)*(a + a/cos(c + d*x))^(3/2)*(A + B/cos(c + d*x) + C/cos(c + d*x)^2),x)

[Out]

int(cos(c + d*x)*(a + a/cos(c + d*x))^(3/2)*(A + B/cos(c + d*x) + C/cos(c + d*x)^2), x)